앙상블 CNN Jensen Inequality 평가 deepLearnging 파이썬 python

CNN 앙상블을 구성하고 평가하려면 test_ensemble.py라는 별도의 파일을 만들고 다음 코드를 삽입합니다. 2-9 행은 필요한 Python 패키지를 가져 오는 반면 12-15 행은 명령 줄 인수를 구문 분석합니다. 여기에는 직렬화 된 네트워크 가중치가 디스크에 저장되는 경로 인 –models가있는 단일 스위치 만 필요합니다. 여기에서 CIFAR-10 데이터 세트를 로드하여 네트워크를 평가할 뿐 (훈련이 아닌) 테스트 세트 만 유지할 수 …

파이썬 python Classification Ensemble 앙상블 Jensen Inequality 인공지능 딥러닝

CNN 앙상블을 구축하는 첫 번째 단계는 각 개별 CNN을 훈련하는 것입니다. 단일 CNN을 훈련하는 많은 예를 보았지만 여러 네트워크를 어떻게 훈련합니까? 일반적으로 두 가지 옵션이 있습니다. ​ 1. 단일 네트워크를 여러 번 훈련하는 데 사용하는 스크립트를 실행하여 출력 직렬화 된 모델 가중치 경로를 각 실행에 대해 저장되도록 변경합니다. 2. for 루프를 사용하여 N 개의 네트워크를 …

Image Net Challenge Inequality Inequality 앙상블

이 장에서는 앙상블 메서드의 개념, 여러 분류기를 가져와 하나의 큰 메타 분류기로 집계하는 프로세스를 살펴 봅니다. 여러 기계 학습 모델을 함께 평균화하면 무작위로 선택한 단일 모델을 사용하여 성능을 능가 (즉, 더 높은 정확도 달성) 할 수 있습니다. 사실, ImageNet Challenge에서 경쟁하는 거의 모든 최신 출판물은 Convolutional Neural Networks 앙상블에 대한 최상의 결과를보고합니다. 이 장에서는 Jensen의 …

DeepLearning MachineLearning Optimization SGD Stochastic Gradient Descent Adagrad Adadelta RMSprop Adam Nadam

이러한 모든 최적화 알고리즘 중에서 선택을 할 때 어떤 것을 선택해야합니까? 불행히도 그 대답은 결정적이지 않습니다. Schaul et al. 2014 년에 확률 적 최적화를위한 단위 테스트 논문에서는 이러한 최적화 방법 중 많은 것을 벤치마킹하려고 시도했으며 적응형 학습률 알고리즘이 호의적으로 수행되었지만 확실한 승자는 없음을 발견했습니다. ​ 딥러닝 최적화 알고리즘 (그리고 이를 어떤 방법을 선택하는 것)은 여전히 …

파이썬 python 딥러닝 최적화 SDG Gradient Descent Optimazation

지금까지는 네트워크를 최적화하기 위해 SGD (Stochastic Gradient Descent) 만 연구하고 사용했지만 딥 러닝에 사용되는 다른 최적화 방법이 있습니다. 특히 이러한 고급 최적화 기술은 다음 중 하나를 추구합니다. 1. 합리적인 분류 정확도를 얻기 위해 시간 (즉, 에포크 수)을 줄입니다. 2. 학습률 이외의 더 넓은 범위의 하이퍼 파라미터에 대해 네트워크를 더 “잘 작동”하도록 만듭니다. 3. 이상적으로는 SGD로 …

deepLearning Similar different Dataset small large python 머신러닝

다음 섹션은 Stanford의 cs231n 클래스의 우수한 “전이 학습”강의에서 영감을 받았습니다. 또한 실험에 도움이 되는 저만의 일화 경험을 포함했습니다. 특성 추출에 관한 23 장과 미세 조정에 관한 25 장의 전이 학습의 성공을 감안할 때 전이 학습을 적용해야 하는시기와 모델을 처음부터 학습해야하는 시기가 궁금 할 수 있습니다. 이 결정을 내리려면 두 가지 중요한 요소를 고려해야합니다. ​ 1. …

딥러닝 deepLearning 최적화 머신러닝 파이썬 python dogs and cats

이 장에서는 원시 이미지를 심층 신경망 훈련에 적합한 HDF5 데이터 세트로 직렬화하는 방법을 배웠습니다. 교육이 I/O 지연으로 인해 디스크에있는 이미지 경로의 미니 배치에 액세스하는 것이 아니라 원시 이미지를 HDF5 파일로 직렬화 한 이유는 I/O 지연 때문입니다 – 디스크의 각 이미지를 읽기 위해 I/O 작업을 수행해야 합니다. 이 미묘한 최적화는 큰 문제처럼 보이지 않지만 I/O 지연은 …

Dataset Building Dataset Building HDF5 Dataset Writer 인공지능 딥러닝

이제 구성 파일이 정의되었으므로 실제로 HDF5 데이터 세트를 빌드 해 보겠습니다. 새 파일을 열고 이름을 build_dogs_vs_cats.py로 지정하고 다음 코드를 삽입합니다. 2-12 행은 필수 Python 패키지를 가져옵니다. 프로젝트의 첫 번째 가져 오기로 프로젝트 구성 파일을 가져오고 싶습니다 (2 행). 이 방법은 취향의 문제이므로 파일에서 원하는 위치에 가져 오기를 자유롭게 배치하십시오. 또한 dogs_vs_cats_config의 이름을 단순히 config로 변경하여 …

인공지능 configuration 딥러닝 기계학습 AI HDF5 datasets kaggle Dogs vs. Cats

이제 더 고급 프로젝트와 딥 러닝 방법을 빌드하기 시작 했으므로 각 프로젝트에 대한 특수 구성 Python 모듈을 만들고 싶습니다. 예를 들어, 다음은 Kaggle Dogs vs. Cats 프로젝트의 디렉토리 구조입니다. 다음 장에서 검토 할 예정이므로 지금은 실제 Python 스크립트를 무시할 수 있지만 config라는 디렉토리를 살펴보십시오. 구성 내부에는 dogs_vs_cats_config.py라는 단일 Python 파일이 있습니다.이 파일을 사용하여 다음을 포함하여 …

HDF5 LargeSize Data 딥러닝 인공지능 파이썬 python dataset

지금까지이 책에서 우리는 기계의 주 메모리에 맞을 수있는 데이터 세트로만 작업했습니다. 소규모 데이터 세트의 경우 이는 합리적인 가정입니다. 각 개별 이미지를 로드하고 전처리 한 다음 네트워크를 통해 공급되도록 허용하기 만하면됩니다. 그러나 대규모 딥러닝 데이터 세트 (예 : ImageNet)의 경우 한 번에 데이터 세트의 일부 (예 : 미니 배치)에만 액세스하는 데이터 생성기를 생성 한 다음 배치가 …